酷兔英语

章节正文
文章总共2页
regular tables exist adapted to all cases; and there can be no

doubt that those who have realized large fortunes by horse-racing
managed to do so by uniformlyacting on some such principles, as

well as by availing themselves of such 'valuable information' as
may be secured, before events come off, by those who make

horse-racing their business.
The same system was applied, and with still greater precision, to

Cock-fighting, to Lotteries, Raffles, Backgammon, Cribbage, Put,
All Fours, and Whist, showing all the chances of holding any

particular card or cards. Thus, it is 2 to 1 that your partner
has not one certain card; 17 to 2 that he has not two certain

cards; 31 to 26 that he has not one of them only; and 32 to 25
(or 5 to 4) that he has one or both--that is, when two cards are

in question. It is 31 to 1 that he has three certain cards; 7 to
2 that he has not two; 7 to 6 that he has not one; 13 to 6 that

he has either one or two; 5 to 2 that he has one, two, or three
cards; that is, when three cards are in question.

With regard to the dealer and his partner, it is 57,798 to 7176
(better than 8 to 1) that they are not four by honours; it is

32,527 to 32,448 (or about an even bet) that they are not two by
honours; it is 36,924 to 25,350 (or 11 to 7 nearly) that the

honours count; it is 42,237 to 22,737 (or 15 to 8 nearly) that
the dealer is nothing by honours.[55]

[55] Proctor, The Sportsman's Sure Guide. Lond. A.D. 1733.
Such is a general sketch of the large subject included under the

term of the calculation of probabilities, which comprises not
only the chances of games of hazard, insurances, lotteries, &c.,

but also the determination of future events from observations
made relative to events of the same nature. This subject of

inquiry dates only from the 17th century, and occupied the minds
of Pascal, Huygens, Fermot, Bernouilli, Laplace, Fourier,

Lacroix, Poisson, De Moivre; and in more modern times, Cournot,
Quetelet, and Professor De Morgan.

In the matter of betting, or in estimating the 'odds' in betting,
of course an acquaintance with the method must be of some

service, and there can be no doubt that professional gamesters
endeavoured to master the subject.

M. Robert-Houdin, in his amusing work, Les Tricheries des Grecs
devoilees, has propounded some gaming axioms which are at least

curious and interesting; they are presented as those of a
professionalgambler and cheat.

1. 'Every game of chance presents two kinds of chances which are
very distinct,--namely, those relating to the person interested,

that is, the player; and those inherent in the combinations of
the game.'

In the former there is what must be called, for the want of a
better name, 'good luck' or 'bad luck,' that is, some mysterious

cause which at times gives the play a 'run' of good or bad luck;
in the latter there is the entire doctrine of 'probabilities'

aforesaid, which, according to M. Houdin's gaming hero, may be
completely discarded for the following axiom:--

2. 'If chance can bring into the game all possible combinations,
there are, nevertheless, certain limits at which it seems to

stop. Such, for instance, as a certain number turning up ten
times in succession at Roulette. This is possible, but it has

never happened.'
Nevertheless a most remarkable fact is on record. In 1813, a Mr

Ogden betted 1000 guineas to ONE guinea, that calling seven as
the main, the caster would not throw that number ten times

successively. Wonderful to relate! the caster threw seven nine
times following. Thereupon Mr Ogden offered him 470 guineas to

be off the bet--which he refused. The caster took the box again
and threw nine,--and so Mr Ogden won his guinea![56] In this

case there seems to have been no suspicionwhatever of unfair
dice being used.

[56] Seymour Harcourt, The Gaming Calendar.
3. 'In a game of chance, the oftener the same combination has

occurred in succession, the nearer we are to the certainty that
it will not recur at the next cast or turn up. This is the most

elementary of the theories on probabilities; it is termed the
MATURITY OF THE CHANCES.'

'Hence,' according to this great authority, 'a player must come
to the table not only "in luck," but he must not risk his money

excepting at the instant prescribed by the rules of the maturity
of the chances.'

Founded on this theory we have the following precepts for
gamesters:--

1. 'For gaming, prefer Roulette, because it presents several
ways of staking your money[57]--which permits the study of

several.
[57] 'Pair, impair, passe, manque, and the 38 numbers of the

Roulette, besides the different combinations of POSITION' and
'maturities' together.

2. 'A player should approach the gaming table perfectly calm and
cool--just as a merchant or tradesman in treaty about any affair.

If he gets into a passion, it is all over with prudence, all over
with good luck--for the demon of bad luck invariably pursues a

passionate player.
3. 'Every man who finds a pleasure in playing runs the risk of

losing.
4. 'A prudentplayer, before undertaking anything, should put

himself to the test to discover if he is "in vein"--in luck. In
all doubt, you should abstain.'

I remember a curious incident in my childhood, which seems much
to the point of this axiom. A magnificent gold watch and chain

were given towards the building of a church, and my mother took
three chances, which were at a very high figure, the watch and

chain being valued at more than L100. One of these chances was
entered in my name, one in my brother's, and the third in my

mother's. I had to throw for her as well as myself. My brother
threw an insignificant figure; for myself I did the same; but,

oddly enough, I refused to throw for my mother on finding that I
had lost my chance, saying that I should wait a little longer--

rather a curious piece of prudence for a child of thirteen. The
raffle was with three dice; the majority of the chances had been

thrown, and 34 was the highest. After declining to throw I went
on throwing the dice for amusement, and was surprised to find

that every throw was better than the one I had in the raffle. I
thereupon said--'Now I'll throw for mamma.' I threw thirty-six,

which won the watch! My mother had been a large subscriber to
the building of the church, and the priest said that my winning

the watch for her was quite PROVIDENTIAL. According to M.
Houdin's authority, however, it seems that I only got into

'vein'--but how I came to pause and defer throwing the last
chance, has always puzzled me respecting this incident of my

childhood, which made too great an impression ever to be effaced.
5. 'There are persons who are constantly pursued by bad luck.

To such I say--NEVER PLAY.
6. 'Stubborness at play is ruin.

7. 'Remember that Fortune does not like people to be overjoyed
at her favours, and that she prepares bitter deceptions for the

imprudent, who are intoxicated by success.'
Such are the chief axioms of a most experienced gamester, and M.

Houdin sums up the whole into the following:--
8. 'Before risking your money at play, you must deeply study

your "vein" and the different probabilities of the game--termed
the maturity of the chances.'

M. Robert-Houdin got all this precious information from a
gamester named Raymond. It appears that the first meeting

between him and this man was at a subscription-ball, where the

文章总共2页
文章标签:名著  

章节正文