2004年第二届燃料电池科学,工程及技术研讨会
美国,纽约,罗切斯特,2004,6,14-16
燃料电池2004-2464
摘要
燃料电池数学模型能够模拟不同程度的细节问题,从简单的电子表格图像到复杂的计算流体力学模型。而这些都在被美国通用公司燃料电池部门所利用。这篇文章主要描述了光电效应燃料电池在热学方面分析模型的发展与应用。这个模型的范围是一个在燃料电池组中的单电池,它将被分成10-200个控制单元。每个控制单元包括11个模块,而每一个模块又包含一个阳极,一个阴极以及冷冻剂,其中三块用于介质传播/膜状电极集成,而四块用于两极板的阴极部分,还有四块用于两极板的阳极部分。这模拟的结果有如下特点:
(1)与那些包含成百上千甚至数以万计的单元CFD 表示法不同,这篇论文所描述的这个模型不能描述在阳极,阴极或者是在冷冻剂管道里的速度概况运动方程。在一定程度上,在阳极和阴极流动区域内流动速度是受使用者支配的。典型的,均匀的流体外形是假定的,尽管不均匀流体也可能被设定,(2)通过运用10-200个控制单元,这个模型能够呈现出相对湿度和温度的立体变化,(3)在这篇文章中提到的模型塑造方法,其相对低廉的计算经费(与CFD方法相比)使电池的动态模拟更为便利,换言之 ,这个系统短暂的热反应是可以模拟的,(4)被模拟的热效应包括通过电气化学反应释放的热,液体的流向与固体块的相对运动以及在两极板间的热传导。
这篇论文也描述了这个模型已经用过的分析燃料电池热方面操作的一些方法。(1)在DM/MEA和冷却剂板热传导率及接触电阻之间温度敏感度的不同,(2)冷凝剂流域在阴极相对湿度的影响。这个类型的模型的其他潜在用途也被概括出来,包括在短暂的操作和启动期间电池的建模。
背景
燃料电池的模型能够模拟多种程度的复杂状况,从相对简单的0-D电子表格基础模型,到非常复杂的CFD基础模型。这些模型每一个都有他们自己的优点与不足,以及他们属于自己的恰当的用途。在这篇论文中所描述的模型已经达到中级细化水平。它不能解决在每一个电池中液体流速及流动通道问题,相反的,冷凝剂的流动通道,阳极,阴极以及每一个的压降则是被使用者所固定的。当前模型的焦点是观察燃料电池堆的传热,同时为我们提供相对湿度范围,温度范围以及在模块中的敏感度的预测结果。通过这种方法,我们能够用这个模型识别出在热传导方面叠加参数所限制的内容,并且如果我们用不同的极板材料,几何体以及不同特性的冷凝剂等,我们将能够预测温度及相对湿度将会产生怎样的变化。
因为这个模型没有CFD模型那样复杂,在相对较短的CPU时间里演示模拟结果是可行的。这个模型的基础是瞬态,因此,模拟栈板的瞬态行为或者为了模拟稳态状况而消耗大量时间(大于100秒)。另外,这个模型可以与CFD模型协同使用,若是这样,CFD模型被用于设置在极板内三种材料流的流动通道。
模型公式化
这个模型的边界是光电磁效应燃料电池栈中的一个单独极板。这个极板是由单元组成的。图表1展示了一个包含25个单元的弯曲流场。仿真程序内,单元通过线条相互交流。例如,考虑图表1,显示了25单元和26个线条;1供给流,1产出流,以及24个中间流。在给定的模拟中,实际上有三种不同类型的线条;阳极,阴极和冷凝剂。这三种流动路线的线条可能不同。例如,阴极和阳极可能流向相反,然而,阴极和样机也可能流向相同甚至错流。稍后,在单极板不同部分将给出结合例子平流、错流和逆流的产生。
摘要
燃料模型的数学模型在不同程度上应用于从简单的数据表展示到详细的计算流体力学
In 2004 the second fuel cell science, engineering and technical seminars
United States, New York, Rochester ,2004,6,14-16
Fuel Cell 2004-2464
Abstract
Fuel cell mathematical model can simulate different levels of detail, from simple spreadsheets to complex computational fluid dynamics image model. These are in the United States Department of the GM fuel cell use. This article describes the photoelectric effect of fuel cells in terms of thermal analysis model development and application. The scope of this model is a single fuel cell in the battery, it will be divided into a control unit 10-200. Each control unit includes 11 modules, each module also contains an anode, a cathode and coolant, three of which spread to the media / membrane electrode integration, and four for the cathode bipolar plate, as well as four for the anode bipolar plate. The results of this simulation has the following characteristics:
(1) and those that contain hundreds or even thousands of units of different CFD representation, this paper describes this model can not describe the anode, cathode or in the rate of refrigerant pipes overview of the equations of motion. To some extent, in the anode and cathode flow velocity within the region is dominated by the user. Typically, fluid shape is assumed uniform, although uneven fluid may also be set, (2) a control unit through the use of 10-200, this model can show a three-dimensional relativehumidity and temperature changes, (3) models mentioned in this article shaping method, the calculation of its relatively low funding (compared with the CFD) the dynamic simulation of the battery is more convenient, in other words, the systemtransient thermal response is simulated, (4) is simulate the thermal effect of chemical reactions, including through the release of electrical heat, liquid and solid blocks the flow of the relativemotion between the plates and heat transfer.
The paper also describes the analysis of this model has been used thermal aspects of fuel cells operate some of the methods. (1) DM / MEA and coolant plate thermal conductivity and contactresistance between the different temperature sensitivity, (2) condensing agent basin relativehumidity in the cathode. This type of model of other potential uses have been summed up, including a brief period of battery operation and start modeling.
Background
Fuel cell model can simulate the complex situation of multiple levels, from relatively simple 0-D spreadsheet based model, to the very complex CFD based model. These models each have their own advantages and disadvantages, and their own proper use. Described in this paper the model has been refined to the level of intermediate. It can not be solved in every cell in the liquid flow rate and flow path problems, the contrary, the flow of refrigerant channel, anode, cathode, and each of the drop is fixed by the user. The focus of the current model is to observe the fuel cell stack of heat transfer, as well as provide us with the relativehumidity range, temperature range and sensitivity in the module predictions. In this way, we can identify with this model in terms of heat transfer parameters limit the contents of the stack, and if we use different electrode materials, geometry and the different characteristics of the condensing agent, we will be able to predict the temperature and relativehumidity will what are the likely changes.
CFD model because the model does not as complex, in a relatively short CPU time shows the simulation results is feasible. The model is based on the transient, therefore, simulate the transientbehavior of pallets to simulate the steady-state conditions, or consume large amounts of time (greater than 100 seconds). In addition, this model can be used in conjunction with the CFD model, and if so, CFD models are used to set the plate material flow in the three channels.
Model formulation
The boundaries of the model electromagnetic effects of light fuel cell stack in a single plate. The plate is formed by the unit. Figure 1 shows a unit that contains 25 curved flow field. Simulation program, the unit through the line with each other. For example, consider Figure 1, shows 25 units and 26 lines; a supply flow, a production flow, and 24 intermediate flow. In a given simulation, there are actually three different types of lines; anode, cathode and condensing agent. These three flow lines may be different routes. For example, the flow of the anode and cathode may be contrary, however, may also flow to the cathode and the same sample or cross-flow. Later, in a unipolar board with examples given in different parts of the advection, and counter cross-flow generation.